Title: Estimation of Directional Permeability of HMA Based on Numerical Simulation of Micro-scale Water Flow
نویسندگان
چکیده
Permeability of hot mix asphalt (HMA) is an important property that influences asphalt’s resistance to moisture damage. All current methods used by pavement engineers rely on measuring vertical permeability. However, it has been shown recently that the horizontal permeability can be much higher than the vertical one due to the anisotropic and heterogeneous nature of air void distribution. Laboratory and field measurements of horizontal permeability require sophisticated equipment and detailed procedures that limit the ability to measure this property on a routine basis. This study developed a procedure for estimating the horizontal permeability of asphalt mixes. This procedure requires simple laboratory measurements of vertical permeability and porosity (percent air voids) of sublayers within a specimen. The development of this simple method was supported by numerical simulations of micro-scale fluid flow in a wide range of HMA mixtures. The simulations helped in understanding the factors that control vertical and horizontal permeabilities. The developed equation and the numerical simulations confirmed that the horizontal permeability is several times higher than the vertical permeability.
منابع مشابه
Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media
Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...
متن کاملSynthesis and Experimental-Modelling Evaluation of Nanoparticles Movements by Novel Surfactant on Water Injection: An Approach on Mechanical Formation Damage Control and Pore Size Distribution
Water injection is used as a widespread IOR/EOR method and promising formation damages (especially mechanical ones) is a crucial challenge in the near-wellbore of injection wells. The magnesium oxide (MgO) NanoParticles (NPs) considered in the article underwater flooding experiment tests to monitor the promising mechanical formation damage (size exclusion) in lab mechanistic scale include m...
متن کامل2D Numerical Simulation of a Micro Scale Ranque-Hilsch Vortex Tube
In this study, fluid flow and energy separation in a micro-scale Ranque-HilschVortex Tube are numerically investigated. The flow is assumed as 2D, steady,compressible ideal gas, and shear-stress-transport SST k-W is found to be a bestchoice for modeling of turbulence phenomena. The results are in a good agreementwith the experimental results reported in the literature. The results show that f...
متن کاملNumerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al2O3 Nanofluid as A Non Newtonian Fluid by Computational Fluid Dynamic (CFD)
The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...
متن کاملNumerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid
In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...
متن کامل